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ABSTRACT

This paper presents a new algorithm to solve a network problem

with equal flow side constraints. The proposed solution technique is

motivated by the desire to exploit the special structure of the side

constraints and to maintain as much of the characteristics of pure

network problems as possible. \Not only has specialized software for the

efficient solution of pue networks been developed, but the same compu-

tational efficacies lend themselves to the solution of sequences of

minimum cost network flow problems by using reoptimization procedures.

.Our solution technique for the equal flow problem consists of solving

two sequences of pure network problems. One sequence yields tighter

lower bounds on the optimal value by considering the Lagrangean relax-

ation of the equal flow problem in which the side constraints are dualized.

The second sequence yields upper bounds on the optimal value for the

problem and maintains a feasible solution at all times. This sequence is

obtained by considering a reformulation of the equal flow problem based

on parametric changes in the requirements vector. The procedure has the

added attractive feature that it provides a feasible solution which is

known to be within a percentage of the optimal at all times. As such,

the algorithm terminates when a solution with a prespecified tolerance

on the objective function value is obtained. On NETGEN problems,

using the first 150 arcs to form 75 equal flow side constraints, we found

that the new algorithm is approximately 3 times faster than existing

techniques and requires only 50% of the storage.

..... . . .... .. .. .. .. ....
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I. INTRODUCTION

This paper presents a new technique to solve the equal flow problem.

This problem is easily conceptualized as a minimal cost network flow

problem with additional constraints on certain pairs of arcs. Specifically,

given pairs of arcs are required to take on the same value. Applications

of this model include crew scheduling [6], estimating driver costs for

transit operations [28], and the two duty period scheduling problem (251.

The equal flow problem may be solved using a specialization of the simplex

method for networks with side constraints. However, by expl~iting the

special structure of the side constraints, we have developed a new algo-

rithm which results in a decrease in both computer storage and compu-

tation time.

It is well documented that pure network problems can be solved from

fifty to one hundred times faster using specialized primal simplex soft-

ware as compared to general linear programmIng systems. Motivated by this

great advantage, our procedure solves the equal flow problem as a sequence

of pure network problems and totally eliminates the need to deal with a

basis matrix.

1.1 Problem Description

The equal flow problem is defined on a network represented by an (m,n)

node-arc incidence matrix, A, in which K pairs of arcs are identified and

required to have equal flow. Mathematically, this is expressed as:

.!.
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Minimize cx

S.t. Ax b

xk k 1, . K

0 < X <u

where, c is a 1 x n vector of unit costs, b is an m x 1 vector of node

requirements, 0 is an n x 1 vector of zeroes, x is an n x 1 vector of

decision variables, and u is an n x 1 vector of upper bounds. The above

definition, henceforth referred to as P1, assumes that the first 2K arcs

appear in the equal flow constraints. This assumption is in no way

restrictive since, by rearranging the order of the arcs, any equal flow

problem with K pairs can be expressed in the above form. Note that the K

pairs of arcs are mutually exclusive, i.e. an arc appears in at most

one side constraint.

1.2 Survey of Related Literature

In 1961, Charnes and Cooper [71 presented a specialized algorithm

for the model:

Minimize cx

s.t. Ax - b

Cx - d

x > 0,

where A and C are some-general matrices but A has some favored structure.

Their algorithm, called the double reverse method, takes advantage of

the special structure of the matrix A. Variations of this algorithm may

be found in (2, 8, 10, 15, 19, 241. Specializations for multico-inodity

. . . . . . ... ........



problems may be found in [14, 20, 21].

In 1980, Shepardson-and Marsten [25] showed that the two duty period

scheduling problem can be reformulated as a single duty period scheduling

problem with equal flow side constraints. They obtain a Lagrangean dual

for this equal flow problem, by dualizing with respect to the equal flow

side constraints. This Lagrangean dual is maximized using the subgradient

optimization technique. In 1984, Turnquist and Malandraki (28] modeled the

problem of astimating driver costs for transit operations as an integer

equal flow problem. They obtain a Lagrangean dual for their problem, by

dualizing with respect to the side constraints. Their algorithm is a

slight modification of the subgradient optimization technique. They

perform a line search between two successive solutions obtained during

the subgradient optimization process.

Beck, Lasdon, and Engquist [51 transformed the equal flow problem

into a quadratic programing problem which has a penalty for violating

the equal flow constraints. They solved this nonlinear progra=ing

problem using the Fletcher-Reeves conjugate gradient method [9], a

successive linear programing code (13], and a convex simplex code.

If the penalty is sufficiently large, this approach is guaranteed to

converge to the optimal solution of the equal flow problem.

1.3 Objective of the Investigation

The objective of this investigation is to develop and computationally

test a new algorithm for the equal flow problem. This algorithm utilizes

the subgradient optimization technique and is based on the relaxation/

3i. . . ....... . . . . .



restriction procedure proposed by Glover, Glover, and Martinson 11] for

a generalized network model with special side constraints. We establish

that the equal flow problem may be solved as two sequences of pure

network problems, one sequence corresponds to computing a lower bound

while the other corresponds to computing an upper bound. In the limit,

both bounds will converge to the optimal objective value. Our implementation

terminates when the difference between the bounds is within a prespecified

tolerance.

The subgradient optimization technique requires the computation of

subgradients, choice of appropriate step sizes, and the application of

a projection operation. We show that the subgradients for the upper

bound can be computed using the optimal dual variables obtained by

solving pure network problems. We also develop theoretical results

that yield an easy implementation of the projection operation. The

step sizes selected are a modification of the ones proposed by Polyak

[23]. For this choice of step sizes, we prove that our algorithm must

necessarily obtain an iterate at which the objective value is arbitrari-

ly close to the optimal objective value. In a computational study,

comparing our code with a code that is designed to solve network problems

with side constraints, we found that the new code runs approximately 3

times faster and requires 50% less core storage.

4
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I. THE SUBGRADIENT ALGORITHM

The Subgradient Algorithm was first introduced by Shor [27] and is

a general procedure for solving nonlinear programming problems. It may

be viewed as a generalization of the steepest descent (ascent) method

for convex (concave) problems in which the gradient may not exist

everywhere. The subgradient is simply substituted in place of the

gradient-for those points for which the gradient does not exist. When

this occurs, the algorithm may move to a point with objective value

worse than the current point. Hence, the objective function does not

necessarily improve at each iteration and consequently the convergence

results of Zangwill (291 do not apply. Remarkably though, under fairly

minor conditions on the step size, convergence can be guaranteed.

Let the nonlinear program PO be given by:

Minimize f(y)

s.t. yeG

where f is a real valued function that is convex over the compact, con-

vex, and nonempty set G. A vector n will be called a subgradient of f

at ; if f(y) - f(y) ! (y - y) for all y e G. For any y C G,.we denote

the set of all subgradients of f at 7 by af(7). The subgradient algorithm

makes use of an operation called the projection operation. The projection

of a point x onto G, denoted by P(x], is defined to be the unique point y C G

that is nearest to x with respect to the Euclidean norm. Using the projec-

tion operation, we now present the subgradient algorithm in its most

general form.

5
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ALG I SUBGRADIENT OPIMIZATION ALGORITHM

Step 0 (Initialization)

Let yo be any element of G, select a set of step s-izes

sopsis 2,.... and set i - 0.

Step 1 (Find Subgradient)

Let ni e af(y i). If ri 0 0, then terminate with yi optimal.

Step 2 (Move to New Point)

Set y -0- P[Y - s ni], set i -- i + 1 and return to step 1.

Various proposals have been offered for the selection of the step

sizes. Three general schema which have been suggested are:

i) si  iXs

ii) s . =
Inill2

iii) s i  0 < Xi < 2,i nill 2

where f* is the optimal value of f over G. If the constants, A i's,

satisfy the following conditions:

A, > 0, all i; lIm X, - 0; and Z x. i

then the convergence of the algorithm is guaranteed using (i) or (ii)

(see Goffin [12], Helgason [171, Kennington and Helgason (21]). For the

6
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upper bounds, we use a modification of the third step size. The

following result is available for this scheme.

Proposition 1 (Polyak [23])

Let f be a real valued convex function over the compact, convex,

and nonempty set G. Also, let f* be the minimum of f and Inill < C for

all i and some constant C. Then there exists a y* e G with f(y*) - f*,

if scheme (iii) is used.

Note that in (iii), f* is the optimal value of f over G. Since the

optimal objective is unknown before solving the problem, we use a lower

bound on f* in our implementation.

7



III. THE LOWER BOUND

Recall that the equal flow problem, which v= denote by P1, is

given by:

Minimize cx

s.t. Ax -b

X k " r K + k , k - , . ,

0 < x < u.

In our algorithm for PI, lower bounds on the optimal objective of P1 are

used for step sizes and for termination. In this section, we describe a

procedure to obtain these lower bounds.

Consider the following Lagrangean dual for P1, which we shall

refer to as Dl:

Maximize h(w) , where w = [wl,...,wK] R RK, and

K
h(w) - Min{ + [ w (x k - x,+ ,): Ax= b, 0 < x < u).

Proposition 2 (Shettv (26])

Let x he a feasible solution to Pl and let w (w ...... wk] be

a feasible solution to Dl. Then c; > h(w).

Proposition 3 (Bazaraa and Shetty (4])

If Pl has a minimum, then the optimal objectives for P1 and Dl

are equal.

As a consequence of Propositions 2 and 3, we may solve Dl to

obtain a lower bound. We will now show that Dl may be solved using the

B
; ....." . .= .. ' . . ', . - -. '; ... ..... ._'_.; '. ., .,,..,'-': ; * J a'
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VI. COMPUTATIONAL EXPERINEINITATION

This section describes the computer implementation, EQFLO, and

testing of our algorithm for the equal flow problem. The algorithm

was tested on a set of 35 test problems randomly generated using

NETGEN [22]. Computation times are compared with those of NETSIDE [2],

a general purpose code for network problems with side constraints.

Both NETSIDE and EQFLO are written in standard FORTRAN for an incore

implementation and have not been tailored to either the machine or

FORTRAN compiler used for testing.

6.1 Description of the Computer Codes

NETSIDE was developed by Barr, Farhangian, and Kennington at

Southern Methodist University, Dallas, Texas. Designed to solve network

problems with side constraints, it used a specialization of the revised

simplex method known as the primal partitioning algorithm [15]. The

basis inverse is maintained as a rooted spanning tree and a working basis

inverse in product form. The reinversion routine is a modification of the

work of Hellerman and Rarick [18] and uses the "spike swapping theory"

of Helgason and Kennington [16]. The initial working basis consists of a

combination of artificial and slack variables. The working basis is

reinverted every 50 iterations. The pricing routine uses a candidate list

of size 10 with a block size of 400. Both pricing and pivot tolerance are

1. £-6.

EQFLO is our implementaiton of ALC 4, and makes use of MODFLO [11 to

solve pure network subproblems. IODFLO is a set of subroutines which may

22



Step 2 (Compute Upper Bounds)

2a. Set T - 0, set IFLAG - 1.

2b. Call Aig 3 (steps 2 and 3a)

2c. Set R 4- R+1.

If R < ITERU, then go to 2b.

Step 3

Set R 4- 0.

Set p pO.

Go to 1.

In the above algorithm, IFLAG is used in obtaining a starting y from the

solutions in la. The bases used in steps 1 and 2 are generated from the

optimal bases obtained in the previous iterations.

21
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V. THE ALGORITHM

In this section, we present our new algorithm for solving the equal

flow problem. Let ITERL denote the number of iterations spent in step la

in computing the lower bound before returning to the upper bound, and

ITERU denote the number of iterations spent in computing the upper bound

before returning to the lower bound. Also, let T denote the iteration

count for the lower bound, R denote the iteration count for upper bound,

and p0 denote the initial step size for the lower bound.

ALG 4 SUBGRADIENT OPTIMIZATION ALGORITHM

FOR THE EQUAL FLOW PROBLEM

Step 0 (Initialization)

Initialize ITERL, ITERU, REREQ, X0, p0 and tolerance e.

Set T 4- 0, set Q - 0, set R - 0, set w - 0, and set IFLAG 4- 0.

Set UBND .- + -, set LEND -- -, set p p- p0 and set Xk - A0 for k'l,...,K.

Set u - (min(UlU+l...,min(uxU2K)

Step 1 (Computa Lower Bounds)

la. Call ALG 2 (steps 2 and 3a).

lb. Set T - T+1

If T 4- ITERL, then go to 1.

ic. (Initialize y)

If IFLAG # 0, "then go to 2; otherwise,

se$t y *min(al,(Al1+ )

20



2

2 + g*( - - )(2 -X x2 2-a 2-6

2 8

< M6 + g*(- a), where M is a constant less than

2-8 2-a

(2e-e
2)

This completes the proof of Proposition 12.

19



We can choose an integer N large enough that

c2 11 Yl - y * 112

< N.

(g* - i)6

Adding together the inequalities obtained from (1) by letting i take

on all values from 1 to N, we obtain

SYN - y * 112 yi - Y* 112 N(g* - <)0
C< 0,

a contradiction. This justifies our assertion.

By simplifying our assertion further we get,

g(yi) < 2 
+

(2X - xA) (2 - X1 (2 - X i

6 a g*AX 2g*

Ai 2 ' )(

(2A1 6 2) (2 A) (2-)

i

6 [2- +

< 2

= * g*(l ' (I - ))
(2AXi - xA) (2 Ai)

S, + +

(2A - x) 2-8

18
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Suppose that for all i,

A2  2A. g*

gy > (2 2X(X. 2 2X) (X2 -2A 'where

1 3.i i i

6> 0 is given. Let y* C S be an optimal point. By Proposition 11,

x 2gWy )-i)2 2A (g(y.) n~ fl(Y*-.y)

II 112..*I < 11 y .y* 2 + .4

Since n C ag(yi), n±(y* - Yi < g* - g(y.).
Thus,

x (gy i -9) 2A.i(g(y.)-i)(g* 
-g(y.))

>*11 2. fl Y.. y*I 2 1 + 1 311I+ -n ~ 1 1 2 n i 1

Lg(yi)( A2  2X )-x g + 2A ±g

- Iy± - y* + (g (y~)~ 1

IY, .y*fj 2 ((yi)-)

C2

17
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.-.-

In our implementation, we use a lower bound on g, in place of g*.

The following propositions demonstrate that for g's close to g*, our

procedure must necessarily obtain an iterate at which g is arbitrarily

close to g*.

Proposition 11 (Kennington and Helgason [21])

If ni 0,

II Y. - Y 2< J Yi - y
* s1 2I nisn.y - yi) for any y c S

and step size s..

Proposition 12

Let g* be the optimal value.of g, and also let
Si) a g* < g< g*, 0 < a < 1,

ii) s, Ai) - g/11 n1, 2 , and

11i) 0 < C < < 8 < 2 for all i.

If there is a constant C such that II njI1 < C for all i, then there

28
exists some i such that g(y+) 4 H5 + - a) for any 6 > 0

and for some constant M.

Proof

First, we assert that there is some i such that

A g 2A g* 6

". -X2 x for any 6 > 0.
(X - 2Ai) (X - ( 2

16
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Set UBUD 4" cx.

If (UBND - LBND) < e(UBND), then terminate with x optimal;

otherwise,

set v - FROM(j) + 'TO(j) + cj,

set 1 4- (v1 + vK+1,...,K+2K).

If Q RFREQ, then set Q -0, set X -A 0' set Xk '0

for k - 1,...,K, and go to 3;

otherwise,

compute Xk such that 0 < Y- k < uk k -

set Xk {- min{X /2,k}, k ,...,K,

K k ' ck -

set X 4- min{ k,k-l,2,...,K}.

Step 3 (Move to New Point)

3a. Set y 4- P(y (UB LBND) q], set Q -Q+l.SI II12

3b. Go to 2.

Note that the step size (iii) presented before may be rewritten

for our function g as follows:

( i(yi) - g*)
2, 0 < Xi < 2,

where n C ag(y i) and g* is the optimal value of S.

ri

....................-... "- . °.... .................
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where L,M are integers and 0 < L,1 < K. Then

P.) ..... is

a projection of y on S.

Following a description of the terminology used, our algorithm for

obtaining an upper bound for P1 is presented below. Let RFREQ denote the

frequency at which the constant X in step size (iii) is reset to its initial

value, X0, LBND denote a lower bound on P1, UBND denote an upper bound on

Pl, P denote the projection routine described in Proposition 10, £ denote

the termination tolerance and Q denote the iteration count for the

upper bound.

ALG 3 UPEIZ BOUND ALGORITHM

Step 1 (Initialization)

Choose y e S.

Initialize LND, RFREQ, e, and X0.

Set u (min(uluK+ ),... ,min(UKu2)).

Set Q " 0, set Ik 0 for k-1,...,L.

Step 2 (Find Subgradient and Step Size)

For. allocation y, let ; and 7r, respectively, be the vectors of

optimal primal and dual variables for

exAx 0 , 0 < ^ < G}. construct x from x,y.

14
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for P4. Suppose the arc corresponding to j has "From" node J l and "To"

node J 2 " That is, arc j is the ordered pair (jlJ 2). Then we define

FROM(J) - J1 and TO(j) - j 2 " Using this notation, the following propo-

sition gives the required formulae:

Proposition 8 (Shetty [261)

Let it be the vector of optimal dual variables for P4. Then

[Tr, vl,VK+l,...,VKV 2 K] with vj -- i FRO(j)+ 'TO(J) + cJI J-4,...,2K,

are optimal duals for P3.

we now present two propositions that justify the projection routine

used for the upper bound. The proofs may be found in Kennington and

Helgason (211 and Shetty (261.

Proposition 9

Let S be a nonempty, convex set and Y A S. Then y* C S is a

projection of Y on to S if ( - y*)(y- y*) < 0 for all y e S.

Proposition 10

Lat y' (y'lP'2 ' ..y with

yIk < 0 for k 1,...,L

. < < uk u min(u, ) for k +,.

A
k > u for k a L4+t4,...,K

13



Minimize cx

s.t. Ax -b (r)

X - Y1  (vl)

(vK

xy,+l i Yl (K+1)

xK y YK (v K

X2K Y2K (v2K)

0 < x < u (]I)

Then i - (v1 + VK+l,...,vK + v 2K) is a subgradient of g at y (yl,..yK).

As a result of Proposition 7, a subgradient at any given point

y- (yl...'yK) e S required in our specialization of ALG 1 can be

obtained by solving Min{cx: Ax - b, xI - yl,...,x 2K - YK' 0 < x < u}, which

we shall refer to as P3. After substituting xI - Yl '..,XK " YK' in

Ax-- bve obtain a pure network problem, which we shall refer to as

P4 and is given below:

Minimize cx

s.t. Ax-b

A0 < < .

To apply ALG 1, we need 'a procedure for constructing the optimal dual

variables (vlVi+l,...,vK,vzK) for P3 from the optimal dual variables

12



IV. THE UPPER BOUND

An alternate formulation of P1, which will be referred to as P2,

is as follows:

Minimize g(y)

s.t. yeS

where for any vector y - [yl,..yK],

g(y) - Min{cx: Ax - b, 0 < x < u, x k  xK+ k -Yk for all k}

and

S - {y: 0 < Yk < min(ukuK+k) for all k1.

Clearly, P1 and P2 are equivalent. That is, given an optimum for one,

we can construcs an optimum for the other. We will now show that P2

is a special case of the nonlinear program PO and may be solved using

the Subgradient Optimization Algorithm, ALG 1.

Proposition 6 (Shetty [261)

The real valued function g is piece-wise linear convex over the

compact, convex and nonempty set S.

To apply the subgradient algorithm, we need a procedure for obtaining

a subgradient of g at a point y. The following proposition shows that

the dual variables may be used to construct a subgradient.

Proposition 7 (Shettv [261)

Let (,,vlvK+l,... 9VK ,V2,) be the optimal dual variables for

11
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Step 2 (Find Subgradient)
Let x X - [l,... solve

K
h(w) - Min{cx + I wk(x k - X K+k): Ax- b, 0 < x < u}.

k-i

Set LBND h(w).

If (UBND - LBND) < £(UBND) then terminate;

otherwise, set d - K+' K -;Y "

Step 3 (Move to a New Point)

3a. Set w - w + pd, set p - p/2.

3b. Go to 2.

10
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subgradient optimization technique for concave functions. This tech-

nique is similar to ALG I with a modification. Let ppl,P2,.

denote a sequence of step sizes and let di e ah(wi). Then step 2 is

replaced by:

Step 2 (Move to New Point)

Set w w + Pdi set i * i+l and return to step 1.

i-i-i w i + it

To use this algorithm h(w) must be concave, and we need a means

of generating subgradients. These two results follow:

Proposition 4 (Shetty (261)

The real valued function h is concave over R
K

Proposition 5 (Shetrv (261)

For a given 7, let x be an optimal solution to

K

k-]

Then d ; 2( - .] - C2)l is a subgradient of h at

We used scheme (i) for step sizes. Let U3!D denote an upper bound and

assume that the optimal objective value is positive. Our algorithm for

obtaining lower bounds is presented below:

ALG 2 LOWER SOUND ALGORITHM

Step I (Initialization>

Initialize UBID, step size p, and tolerance e.

set w 4- 0.

9
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be used to solve a network problem as well as reoptimize after problem

data changes. Based on NETFLO (21], this code allows the user to change

costs, bounds and/or requirements for a network problem and reoprimize.

The tuning parameters used in all runs were as follows: ITERL - 5,

ITERU 1 10, REFREQ - 5, A) M 0.75, P0 M 0.01, and C - 0.1. MODFLO (11

is used to reoptimize after each change to either the costs or right-

hand-sides.

6.2 The Test Problems

The program NETGEN, a generator for large-scale network test

problems, was used to generate 35 test problems. The parameters used

to generate these problems are described in Klingman, Napier, and Stutz [22].

The test problems have between 200 and 1500 nodes, and 1500 and 7000 arcs.

For each problem, the first 150 arcs were paired to form equal flow sides

constraints. The characteristics of these test problems are listed in

Table 1.

Our algorithm requires upper bounds on all equal flow arcs. Though

NETGEN generates bounds on some of these arcs, there were others with no

upper bounds. We set the maximum of all supplies and demands to be the

upper bounds on such arcs. These bounds were acceptable since the optimal

solutions obtained for our pure network problems were the same as the ones

listed in NETCZN. Furthermore, for all 35 test problems the first 150 arcs

were .sed to form 75 pairs of equal flow side constraints. We were unable

to experiment with more than 75 pairs due to a core storage limitation of

301K. NETSIDE required approximately 300K octal wotds of storage for
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problems 28 through 35 with 75 pairs and any further increase in the

number of pairs would exceed the storage limitation.

6.3 Computational Results

All 35 test problems were solved on the CDC 6600 at Southern

Methodist University, using the FTN compiler with OPT - 2. All 35

problems were solved twice using EQFLO; once with the same step size

for every pair of equal flow arcs and the second time with aifferent

step sizes for different pairs. While using EQFLO to solve these

problems, ALG 4 was followed exactly the first time, whereas, the

computation of the step size for the upper bound was altered the second

time. The modification was as follows:

Step 3 (Move to New Point)

(UBND-LBND)
3a. Set yk " Y "In k 2 Tj k 1,...,K,

set Q - Q+l.

Note that this modification results in different step sizes for different

equal flow pairs. The details of all runs are given in Tables 2 and 3.

The times are in CPU seconds and exclude input and output.

The value 0.01 used for p0 worked well for all test problems except

problem number 11. This problem experienced difficulties in converging

within 10% of the optimal. However, the problem did converge within Io
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of the optimum when we changed p0 to values between 3 and 10.

The computational results presented in Tables 2 and 3 are summarized

in Table 4. Letting -T(ALG) denote the CPU time required to solve the 35

test problems using code ALG, the relationship is given below:

T(NETSIDE) - 2.54 (EQFLO), same step size,

T(NETSIDE) - 3.00 (EQFLO), different step sizes.

Note that EQFLO performs better as the problem size increases. Although

EQFLO was slightly slower than NETSIDE on problems 1 to 10, its performance

increased substantially on problems 11 to 35. In particular, EQFLO ran

approximately 5 to 6 times faster than NETSIDE on problems 28 through 35

and these problems are fairly large. We expect EQFLO to perform even

better on much larger problems. This is attributable to. the fact that

the time for pricing and updating increases dramatically for NETSIDE

with an increase in the size of the network, whereas, the time increase

should be relatively small for EQFLO because the above operations are

performed very efficiently using labelling procedures on the rooted

spanning tree.

The 75 side constraints made the problems approximately three times

harder. That is, the pure networks were solved in 693 seconds while it

required 1973 seconds to solve the equal flow problem. Klingman,

Napier, and Stutz [22] solved the same 35 pure network problems in

approximately 200 seconds using an advance start on a CDC 6600 r rho
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University of Texas at Austin. Richard Barr's best time on these

35 test problems is 104 seconds using ARC II [3]. This difference in

time is due to the fact that EQFLO is a real code (as opposed to all-

integer), uses an all artificial start, and does not use the advanced

data structure or candidate list incorporated in ARC II.

These 35 problems were the largest that could be solved using

NETSIDE under a core storage limitation of 301K octal words. However,

EQFLO required much less storage; approximately 50% less than NETSIDE.

This additional storage for NETSIDE results from the working basis

inverse and the arrays required during the reinversion process.
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VII. SUMNARY AND CONCLUSIONS

This paper presents a new procedure for the equal flow problem.

Unlike the simplex method for the network problem with side constraints,

this new procedure does not require a working basis. We have showed

that using the subgradient optimization technique, the equal flow

problem may be solved as two sequences of pure network problems. One

sequence corresponds to a lower bound while the other corresponds to

an upper bound. In the lower bound, each netw;ork differs from the

previous one in that the cost vector has changed. In the uper bound,

each network differs from the previous one in that the right hand side

has changed. While solving the pure network problems with these

changes in the problem data, a reoptimikation procedure is used to

obtain a good starting solution. Our technique terminates when the

difference between two bounds is within a prespecified tolerance.

Subgradients for upper bounds are computed using the optimal

dual variables obtained by solving the pure network problems. The sub-

gradients for lower bounds are the difference between the flows on the

equal flow arcs, obtained while solving the Lagrangean relaxation. The

projection operation is easily implemented. The step sizes (i) and

(iii), described in Section II, are used for lower and upper bounds,

respectively. For these step sizes, we are guaranteed a solution at

which the objective value is arbitrarily close to the optimal objective

value.

We solved all test problems twice; once with the same step size for
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all equal flow pairs, and once with different step sizes for each pair.

The tests were conducted on a set of 35 randomly generated problems and

a comparison was made with NETSIDE, a code that is designed to solve

network problems with side constraints. On the average, our code ran

approximately 3 times faster. Howver, it's performance improved

substantially as the problem size increased. The new algorithm requires

only 50% of the core storage required by NETSIDE.
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Table 1 NETGEN Test Problems

Problem .Number Number of Nodes Number of Arcs

Transportation Problems
I 100 X 100 1511
2 100 X I00 1700
3 100 X 100 2207
4 100 X i00 2405
5 100 X 100 3100
6 150 X 150 3450
7 150 X 150 4800
8 150 X 150 5470
9 150 X 150 6395

10 150 X 150 6611

Assignment Problems
11 200 X 200 1900
12 200 X 200 2650
13 200 X 200 3400
14 200 X 200 4150
15 200 X 200 4900

Capacitated Network Problems
16 400 1374
17 400 2511
18 400 1374
19 400 2511
20 400 1484
21 400 2904
22 400 1484
23 400 2904
24 400 1398
25 400 2692

__26 .: 400 1398
27 400 2692

Uncapacitated Network Problems
28 1000 3000
29 1000 3500
30 1000 4500
31 1000 4900
32 1500 4492
33 1500 4535
34 1500 5257
35 1500 5880
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Table 2 Comparison of NETSIDE and EQFLO on 35 Test Problems
(Same step size for every equal flow pair)

Problem NETSIDE EQFLO
Number

Optimal Total Time Z of Optimal
Objective Time at Termination

Total Pure Lower Upper Lower Upper
Network Bound Bound Bound Bound

1 2694547 30 50 7 19 24 98 108
2 2350637 24 58 7 23 28 95 105
3 1939836 27 127 9 55 63 99 110
4 1612265 33 79 10 33 36 98 108
5 1480741 33 40 12 13 15 97 108
6 2472907 71 46 22 9 15 98 108
7 2236784 96 59 28 14 17 97 107
8 2223900 84 58 32 11 15 99 108
9 1839835 115 44 36 6 2 98 105
10 2291942 105 79 36 19 24 96 106

11* 4992 135 51 17 11 23 98 108
12 3573 105 93 23 20 50 95 105
13 3142 103 78 27 16 35 98 108
14 2787 118 34 31 1 2 99 101
15 2795 150 127 35 31 61 97 108

16 82161432 43 8 6 1 1 99 107
17 45601025 66 13 8 4 1 99 105
18 81600312 40 8 6 1 1 99 106
19 45601025 66 12 8 3 1 99 102
20 74065202 40 9 6 2 1 99 108
21 40137087 44 11 8 2 1 99 101
22 73429862 32 8 6 1 1 99 109
23 39354594 33 11 8 2 1 99 101
24 85926653 91 7 3 3 1 98 104
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295659 57 7 4 2 1 99 107

28 131316225 201 31 20 9 2 99 107
29 113594497 260 167 25 72 70 98 107
30 90569484 .337 243 23 1il 109 91 106
31 84943754 296 44 24 16 4 99 109
32 180390305 529 80 48 25 7 98 109
33 205246112 453 83 47 23 13 98 108
34 166247998 477 95 51 24 20 96 106
35 163964307 503 68 52 11 5 99 107

* P0  1 10.
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Table 3 Comparison of NETSIDE and EQFLO on 35 Test Problems
(Different step sizes for different pairs)

Problem NETSIDE EQFLO
Number.............

Optimal Total Time % of Optimal
Objective Time . at Termination

- Total Pure Lower Upper Lower Upper
Network Bound Bound Bound Bound

1 2694547 30 47 7 16 24 97 108
2 2350637 24 50 7 19 24 94 105
3 1939836 27 105 9 42 54 99 109
4 1612265 33 74 10 29 35 98 108

5 1480741 33 37 12 10 15 95 106
6 2472907 71 46 22 9 15 98 107
7 2236784 96 57 28 13 16 97 105
8 2223900 84 42 32 4 6 98 109
9 1839835 115 44 36 6 2 98 105

10 2291942 105 76 36 19 21 96 105

11* 4992 135 53 17 9 27 94 104
12 3573 105 79 23 14 4* 95 105
13 3142 103 63 27 11 25 98 108
14 2787 118 34 31 1 2 99 101
15 2795 150 108 35 24 49 98 107

16 82161432 43 8 6 1 1 99 107
17 45601025 66 13 8 4 1 99 105
18 81600312 40 8 6 1 1 99 106
19 45601025 66 12 8 3 1 99 102
20 74065202 40 9 6- 2 1 99 108
21 40137087 44 11 8 2 1 99 101
22 73429862 32 8 6 1 1 99 109
23 39354594 33 11 8 2 1 99 101
24 85926653 91 7 3 3 1 98 104
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295659 57 7 4 2 1 99 107

28 131316225 201 31 20 9 2 99 107
29 113594497 .260 81 25 28 28 97 107
30 90569484 337 148 23 62 63 93 104
31 84943754 296 44 24 16 4 99 109
32 180390305 529 80 48 25 7 98 109
33 205246112 453 78 47 22 9 98 108
34 166247998 477 86 51 23 12 97 107
35 163964307 503 68 52 11 5 99 107

p0  10.
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